19 research outputs found

    Integrating random forest and crop modeling improves the crop yield prediction of winter wheat and oil seed rape

    Get PDF
    The fast and accurate yield estimates with the increasing availability and variety of global satellite products and the rapid development of new algorithms remain a goal for precision agriculture and food security. However, the consistency and reliability of suitable methodologies that provide accurate crop yield outcomes still need to be explored. The study investigates the coupling of crop modeling and machine learning (ML) to improve the yield prediction of winter wheat (WW) and oil seed rape (OSR) and provides examples for the Free State of Bavaria (70,550 km2), Germany, in 2019. The main objectives are to find whether a coupling approach [Light Use Efficiency (LUE) + Random Forest (RF)] would result in better and more accurate yield predictions compared to results provided with other models not using the LUE. Four different RF models [RF1 (input: Normalized Difference Vegetation Index (NDVI)), RF2 (input: climate variables), RF3 (input: NDVI + climate variables), RF4 (input: LUE generated biomass + climate variables)], and one semi-empiric LUE model were designed with different input requirements to find the best predictors of crop monitoring. The results indicate that the individual use of the NDVI (in RF1) and the climate variables (in RF2) could not be the most accurate, reliable, and precise solution for crop monitoring; however, their combined use (in RF3) resulted in higher accuracies. Notably, the study suggested the coupling of the LUE model variables to the RF4 model can reduce the relative root mean square error (RRMSE) from −8% (WW) and −1.6% (OSR) and increase the R 2 by 14.3% (for both WW and OSR), compared to results just relying on LUE. Moreover, the research compares models yield outputs by inputting three different spatial inputs: Sentinel-2(S)-MOD13Q1 (10 m), Landsat (L)-MOD13Q1 (30 m), and MOD13Q1 (MODIS) (250 m). The S-MOD13Q1 data has relatively improved the performance of models with higher mean R 2 [0.80 (WW), 0.69 (OSR)], and lower RRMSE (%) (9.18, 10.21) compared to L-MOD13Q1 (30 m) and MOD13Q1 (250 m). Satellite-based crop biomass, solar radiation, and temperature are found to be the most influential variables in the yield prediction of both crops

    Impact of STARFM on crop yield predictions: fusing MODIS with Landsat 5, 7, and 8 NDVIs in Bavaria Germany

    Get PDF
    Rapid and accurate yield estimates at both field and regional levels remain the goal of sustainable agriculture and food security. Hereby, the identification of consistent and reliable methodologies providing accurate yield predictions is one of the hot topics in agricultural research. This study investigated the relationship of spatiotemporal fusion modelling using STRAFM on crop yield prediction for winter wheat (WW) and oil-seed rape (OSR) using a semi-empirical light use efficiency (LUE) model for the Free State of Bavaria (70,550 km2), Germany, from 2001 to 2019. A synthetic normalised difference vegetation index (NDVI) time series was generated and validated by fusing the high spatial resolution (30 m, 16 days) Landsat 5 Thematic Mapper (TM) (2001 to 2012), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (2012), and Landsat 8 Operational Land Imager (OLI) (2013 to 2019) with the coarse resolution of MOD13Q1 (250 m, 16 days) from 2001 to 2019. Except for some temporal periods (i.e., 2001, 2002, and 2012), the study obtained an R2 of more than 0.65 and a RMSE of less than 0.11, which proves that the Landsat 8 OLI fused products are of higher accuracy than the Landsat 5 TM products. Moreover, the accuracies of the NDVI fusion data have been found to correlate with the total number of available Landsat scenes every year (N), with a correlation coefficient (R) of +0.83 (between R2 of yearly synthetic NDVIs and N) and −0.84 (between RMSEs and N). For crop yield prediction, the synthetic NDVI time series and climate elements (such as minimum temperature, maximum temperature, relative humidity, evaporation, transpiration, and solar radiation) are inputted to the LUE model, resulting in an average R2 of 0.75 (WW) and 0.73 (OSR), and RMSEs of 4.33 dt/ha and 2.19 dt/ha. The yield prediction results prove the consistency and stability of the LUE model for yield estimation. Using the LUE model, accurate crop yield predictions were obtained for WW (R2 = 0.88) and OSR (R2 = 0.74). Lastly, the study observed a high positive correlation of R = 0.81 and R = 0.77 between the yearly R2 of synthetic accuracy and modelled yield accuracy for WW and OSR, respectively

    Impact of STARFM on Crop Yield Predictions: Fusing MODIS with Landsat 5, 7, and 8 NDVIs in Bavaria Germany

    Get PDF
    Rapid and accurate yield estimates at both field and regional levels remain the goal of sustainable agriculture and food security. Hereby, the identification of consistent and reliable methodologies providing accurate yield predictions is one of the hot topics in agricultural research. This study investigated the relationship of spatiotemporal fusion modelling using STRAFM on crop yield prediction for winter wheat (WW) and oil-seed rape (OSR) using a semi-empirical light use efficiency (LUE) model for the Free State of Bavaria (70,550 km2), Germany, from 2001 to 2019. A synthetic normalised difference vegetation index (NDVI) time series was generated and validated by fusing the high spatial resolution (30 m, 16 days) Landsat 5 Thematic Mapper (TM) (2001 to 2012), Landsat 7 Enhanced Thematic Mapper Plus (ETM+) (2012), and Landsat 8 Operational Land Imager (OLI) (2013 to 2019) with the coarse resolution of MOD13Q1 (250 m, 16 days) from 2001 to 2019. Except for some temporal periods (i.e., 2001, 2002, and 2012), the study obtained an R2 of more than 0.65 and a RMSE of less than 0.11, which proves that the Landsat 8 OLI fused products are of higher accuracy than the Landsat 5 TM products. Moreover, the accuracies of the NDVI fusion data have been found to correlate with the total number of available Landsat scenes every year (N), with a correlation coefficient (R) of +0.83 (between R2 of yearly synthetic NDVIs and N) and −0.84 (between RMSEs and N). For crop yield prediction, the synthetic NDVI time series and climate elements (such as minimum temperature, maximum temperature, relative humidity, evaporation, transpiration, and solar radiation) are inputted to the LUE model, resulting in an average R2 of 0.75 (WW) and 0.73 (OSR), and RMSEs of 4.33 dt/ha and 2.19 dt/ha. The yield prediction results prove the consistency and stability of the LUE model for yield estimation. Using the LUE model, accurate crop yield predictions were obtained for WW (R2 = 0.88) and OSR (R2 = 0.74). Lastly, the study observed a high positive correlation of R = 0.81 and R = 0.77 between the yearly R2 of synthetic accuracy and modelled yield accuracy for WW and OSR, respectively

    Modelling Crop Biomass from Synthetic Remote Sensing Time Series: Example for the DEMMIN Test Site, Germany.

    Get PDF
    This study compares the performance of the five widely used crop growth models (CGMs): World Food Studies (WOFOST), Coalition for Environmentally Responsible Economies (CERES)-Wheat, AquaCrop, cropping systems simulation model (CropSyst), and the semi-empiric light use efficiency approach (LUE) for the prediction of winter wheat biomass on the Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN) test site, Germany. The study focuses on the use of remote sensing (RS) data, acquired in 2015, in CGMs, as they offer spatial information on the actual conditions of the vegetation. Along with this, the study investigates the data fusion of Landsat (30 m) and Moderate Resolution Imaging Spectroradiometer (MODIS) (500 m) data using the spatial and temporal reflectance adaptive reflectance fusion model (STARFM) fusion algorithm. These synthetic RS data offer a 30-m spatial and one-day temporal resolution. The dataset therefore provides the necessary information to run CGMs and it is possible to examine the fine-scale spatial and temporal changes in crop phenology for specific fields, or sub sections of them, and to monitor crop growth daily, considering the impact of daily climate variability. The analysis includes a detailed comparison of the simulated and measured crop biomass. The modelled crop biomass using synthetic RS data is compared to the model outputs using the original MODIS time series as well. On comparison with the MODIS product, the study finds the performance of CGMs more reliable, precise, and significant with synthetic time series. Using synthetic RS data, the models AquaCrop and LUE, in contrast to other models, simulate the winter wheat biomass best, with an output of high R2 (>0.82), low RMSE (600 g/m2). The study shows that the models requiring fewer input parameters (AquaCrop and LUE) to simulate crop biomass are highly applicable and precise. At the same time, they are easier to implement than models, which need more input parameters (WOFOST and CERES-Wheat)

    Disentangling effects of climate and land use on biodiversity and ecosystem services - a multi‐scale experimental design

    Get PDF
    Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981–2010) and three prevailing land-use types, that is, near-natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6–9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5–10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and |r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs

    Potenzial der Fernerkundung für die Modellierung Langfristiger Ernteerträge

    No full text
    Accurate crop monitoring in response to climate change at a regional or field scale plays a significant role in developing agricultural policies, improving food security, forecasting, and analysing global trade trends. Climate change is expected to significantly impact agriculture, with shifts in temperature, precipitation patterns, and extreme weather events negatively affecting crop yields, soil fertility, water availability, biodiversity, and crop growing conditions. Remote sensing (RS) can provide valuable information combined with crop growth models (CGMs) for yield assessment by monitoring crop development, detecting crop changes, and assessing the impact of climate change on crop yields. This dissertation aims to investigate the potential of RS data on modelling long-term crop yields of winter wheat (WW) and oil seed rape (OSR) for the Free State of Bavaria (70,550 km2 ), Germany. The first chapter of the dissertation describes the reasons favouring the importance of accurate crop yield predictions for achieving sustainability in agriculture. Chapter second explores the accuracy assessment of the synthetic RS data by fusing NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16-days; L) and Sentinel-2 (10 m, 5–6 days; S), with four low spatial resolution data (low pair) (MOD13Q1 (250 m, 16-days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-day), and MOD09Q1 (250 m, 8-days)) using the spatial and temporal adaptive reflectance fusion model (STARFM), which fills regions' cloud or shadow gaps without losing spatial information. The chapter finds that both L-MOD13Q1 (R2 = 0.62, RMSE = 0.11) and S-MOD13Q1 (R2 = 0.68, RMSE = 0.13) are more suitable for agricultural monitoring than the other synthetic products fused. Chapter third explores the ability of the synthetic spatiotemporal datasets (obtained in chapter 2) to accurately map and monitor crop yields of WW and OSR at a regional scale. The chapter investigates and discusses the optimal spatial (10 m, 30 m, or 250 m), temporal (8 or 16-day) and CGMs (World Food Studies (WOFOST), and the semi-empiric light use efficiency approach (LUE)) for accurate crop yield estimations of both crop types. Chapter third observes that the observations of high temporal resolution (8-day) products of both S-MOD13Q1 and L-MOD13Q1 play a significant role in accurately measuring the yield of WW and OSR. The chapter investigates that the simple light use efficiency (LUE) model (R2 = 0.77 and relative RMSE (RRMSE) = 8.17%) that required fewer input parameters to simulate crop yield is highly accurate, reliable, and more precise than the complex WOFOST model (R2 = 0.66 and RRMSE = 11.35%) with higher input parameters. Chapter four researches the relationship of spatiotemporal fusion modelling using STRAFM on crop yield prediction for WW and OSR using the LUE model for Bavaria from 2001 to 2019. The chapter states the high positive correlation coefficient (R) = 0.81 and R = 0.77 between the yearly R2 of synthetic accuracy and modelled yield accuracy for WW and OSR from 2001 to 2019, respectively. The chapter analyses the impact of climate variables on crop yield predictions by observing an increase in R2 (0.79 (WW)/0.86 (OSR)) and a decrease in RMSE (4.51/2.57 dt/ha) when the climate effect is included in the model. The fifth chapter suggests that the coupling of the LUE model to the random forest (RF) model can further reduce the relative root mean square error (RRMSE) from -8% (WW) and -1.6% (OSR) and increase the R2 by 14.3% (for both WW and OSR), compared to results just relying on LUE. The same chapter concludes that satellite-based crop biomass, solar radiation, and temperature are the most influential variables in the yield prediction of both crop types. Chapter six attempts to discuss both pros and cons of RS technology while analysing the impact of land use diversity on crop-modelled biomass of WW and OSR. The chapter finds that the modelled biomass of both crops is positively impacted by land use diversity to the radius of 450 (Shannon Diversity Index ~0.75) and 1050 m (~0.75), respectively. The chapter also discusses the future implications by stating that including some dependent factors (such as the management practices used, soil health, pest management, and pollinators) could improve the relationship of RS-modelled crop yields with biodiversity. Lastly, chapter seven discusses testing the scope of new sensors such as unmanned aerial vehicles, hyperspectral sensors, or Sentinel-1 SAR in RS for achieving accurate crop yield predictions for precision farming. In addition, the chapter highlights the significance of artificial intelligence (AI) or deep learning (DL) in obtaining higher crop yield accuracies.Die genaue Überwachung von Nutzpflanzen als Reaktion auf den Klimawandel auf regionaler oder feldbezogener Ebene spielt eine wichtige Rolle bei der Entwicklung von Agrarpolitiken, der Verbesserung der Ernährungssicherheit, der Erstellung von Prognosen und der Analyse von Trends im Welthandel. Es wird erwartet, dass sich der Klimawandel erheblich auf die Landwirtschaft auswirken wird, da sich Verschiebungen bei den Temperaturen, Niederschlagsmustern und extremen Wetterereignissen negativ auf die Ernteerträge, die Bodenfruchtbarkeit, die Wasserverfügbarkeit, die Artenvielfalt und die Anbaubedingungen auswirken werden. Die Fernerkundung (RS) kann in Kombination mit Wachstumsmodellen (CGM) wertvolle Informationen für die Ertragsbewertung liefern, indem sie die Entwicklung von Pflanzen überwacht, Veränderungen bei den Pflanzen erkennt und die Auswirkungen des Klimawandels auf die Ernteerträge bewertet. Ziel dieser Dissertation ist es, das Potenzial von RS-Daten für die Modellierung langfristiger Ernteerträge von Winterweizen (WW) und Ölraps (OSR) für den Freistaat Bayern (70.550 km2 ), Deutschland, zu untersuchen. Das erste Kapitel der Dissertation beschreibt die Gründe, die für die Bedeutung genauer Ernteertragsvorhersagen für die Nachhaltigkeit in der Landwirtschaft sprechen. Das zweite Kapitel befasst sich mit der Bewertung der Genauigkeit der synthetischen RS Daten durch die Fusion der NDVIs von zwei Daten mit hoher räumlicher Auflösung (hohes Paar) (Landsat (30 m, 16 Tage; L) und Sentinel-2 (10 m, 5-6 Tage; S) mit vier Daten mit geringer räumlicher Auflösung (niedriges Paar) (MOD13Q1 (250 m, 16 Tage), MCD43A4 (500 m, ein Tag), MOD09GQ (250 m, ein Tag) und MOD09Q1 (250 m, 8 Tage)) unter Verwendung des räumlich und zeitlich adaptiven Reflexionsfusionsmodells (STARFM), das Wolken- oder Schattenlücken in Regionen füllt, ohne räumliche Informationen zu verlieren. In diesem Kapitel wird festgestellt, dass sowohl L-MOD13Q1 (R2 = 0,62, RMSE = 0,11) als auch S-MOD13Q1 (R2 = 0,68, RMSE = 0,13) für die Überwachung der Landwirtschaft besser geeignet sind als die anderen fusionierten synthetischen Produkte. Im dritten Kapitel wird untersucht, inwieweit die (in Kapitel 2 gewonnenen) synthetischen raum-zeitlichen Datensätze geeignet sind, die Ernteerträge von WW und OSR auf regionaler Ebene genau zu kartieren und zu überwachen. Das Kapitel untersucht und diskutiert die optimalen räumlichen (10 m, 30 m oder 250 m),zeitlichen (8 oder 16 Tage) und CGMs (World Food Studies (WOFOST) und den semi-empirischen Ansatz der Lichtnutzungseffizienz (LUE)) für genaue Ertragsschätzungen beider Kulturarten. Im dritten Kapitel wird festgestellt, dass die Beobachtung von Produkten mit hoher zeitlicher Auflösung (8 Tage) sowohl des S-MOD13Q1 als auch des L-MOD13Q1 eine wichtige Rolle bei der genauen Messung des Ertrags von WW und OSR spielt. In diesem Kapitel wird untersucht, dass das einfache Modell der Lichtnutzungseffizienz (LUE) (R2 = 0,77 und relativer RMSE (RRMSE) = 8,17 %), das weniger Eingabeparameter zur Simulation des Ernteertrags benötigt, sehr genau, zuverlässig und präziser ist als das komplexe WOFOST-Modell (R2 = 0,66 und RRMSE = 11,35 %) mit höheren Eingabeparametern. In Kapitel vier wird der Zusammenhang zwischen der raum-zeitlichen Fusionsmodellierung mit STRAFM und der Ertragsvorhersage für WW und OSR mit dem LUE-Modell für Bayern von 2001 bis 2019 untersucht. Das Kapitel stellt den hohen positiven Korrelationskoeffizienten (R) = 0,81 und R = 0,77 zwischen dem jährlichen R2 der synthetischen Genauigkeit und der modellierten Ertragsgenauigkeit für WW bzw. OSR von 2001 bis 2019 fest. In diesem Kapitel werden die Auswirkungen der Klimavariablen auf die Ertragsvorhersagen analysiert, wobei ein Anstieg des R2 (0,79 (WW)/0,86 (OSR)) und eine Verringerung des RMSE (4,51/2,57 dt/ha) festgestellt werden, wenn der Klimaeffekt in das Modell einbezogen wird. Das fünfte Kapitel deutet darauf hin, dass die Kopplung des LUE-Modells mit dem Random-Forest-Modell (RF) den relativen mittleren quadratischen Fehler (RRMSE) von -8 % (WW) und -1,6 % (OSR) weiter reduzieren und das R2 um 14,3 % (sowohl für WW als auch für OSR) erhöhen kann, verglichen mit Ergebnissen, die nur auf LUE beruhen. Das gleiche Kapitel kommt zu dem Schluss, dass die satellitengestützte Pflanzenbiomasse, die Sonneneinstrahlung und die Temperatur die einflussreichsten Variablen bei der Ertragsvorhersage für beide Kulturarten sind. In Kapitel sechs wird versucht, sowohl die Vor- als auch die Nachteile der RS-Technologie zu erörtern, indem die Auswirkungen der unterschiedlichen Landnutzung auf die modellierte Biomasse von WW und OSR analysiert werden. In diesem Kapitel wird festgestellt, dass die modellierte Biomasse beider Kulturen durch die Landnutzungsvielfalt bis zu einem Radius von 450 (Shannon Diversity Index ~0,75) bzw. 1050 m (~0,75) positiv beeinflusst wird. In diesem Kapitel werden auch künftige Auswirkungen erörtert, indem festgestellt wird, dass die Einbeziehung einiger abhängiger Faktoren (wie die angewandten Bewirtschaftungsmethoden, die Bodengesundheit, die Schädlingsbekämpfung und die Bestäuber) die Beziehung zwischen den mit RS modellierten Ernteerträgen und der biologischen Vielfalt verbessern könnte. Im siebten Kapitel schließlich wird die Erprobung neuer Sensoren wie unbemannte Luftfahrzeuge, hyperspektrale Sensoren oder Sentinel-1 SAR in der RS erörtert, um genaue Ertragsvorhersagen für die Präzisionslandwirtschaft zu erreichen. Darüber hinaus wird in diesem Kapitel die Bedeutung der künstlichen Intelligenz (KI) oder des Deep Learning (DL) für die Erzielung einer höheren Genauigkeit der Ernteerträge hervorgehoben

    Potenzial der Fernerkundung für die Modellierung Langfristiger Ernteerträge

    No full text
    Accurate crop monitoring in response to climate change at a regional or field scale plays a significant role in developing agricultural policies, improving food security, forecasting, and analysing global trade trends. Climate change is expected to significantly impact agriculture, with shifts in temperature, precipitation patterns, and extreme weather events negatively affecting crop yields, soil fertility, water availability, biodiversity, and crop growing conditions. Remote sensing (RS) can provide valuable information combined with crop growth models (CGMs) for yield assessment by monitoring crop development, detecting crop changes, and assessing the impact of climate change on crop yields. This dissertation aims to investigate the potential of RS data on modelling long-term crop yields of winter wheat (WW) and oil seed rape (OSR) for the Free State of Bavaria (70,550 km2), Germany. The first chapter of the dissertation describes the reasons favouring the importance of accurate crop yield predictions for achieving sustainability in agriculture. Chapter second explores the accuracy assessment of the synthetic RS data by fusing NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16-days; L) and Sentinel-2 (10 m, 5–6 days; S), with four low spatial resolution data (low pair) (MOD13Q1 (250 m, 16-days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-day), and MOD09Q1 (250 m, 8-days)) using the spatial and temporal adaptive reflectance fusion model (STARFM), which fills regions' cloud or shadow gaps without losing spatial information. The chapter finds that both L-MOD13Q1 (R2 = 0.62, RMSE = 0.11) and S-MOD13Q1 (R2 = 0.68, RMSE = 0.13) are more suitable for agricultural monitoring than the other synthetic products fused. Chapter third explores the ability of the synthetic spatiotemporal datasets (obtained in chapter 2) to accurately map and monitor crop yields of WW and OSR at a regional scale. The chapter investigates and discusses the optimal spatial (10 m, 30 m, or 250 m), temporal (8 or 16-day) and CGMs (World Food Studies (WOFOST), and the semi-empiric light use efficiency approach (LUE)) for accurate crop yield estimations of both crop types. Chapter third observes that the observations of high temporal resolution (8-day) products of both S-MOD13Q1 and L-MOD13Q1 play a significant role in accurately measuring the yield of WW and OSR. The chapter investigates that the simple light use efficiency (LUE) model (R2 = 0.77 and relative RMSE (RRMSE) = 8.17%) that required fewer input parameters to simulate crop yield is highly accurate, reliable, and more precise than the complex WOFOST model (R2 = 0.66 and RRMSE = 11.35%) with higher input parameters. Chapter four researches the relationship of spatiotemporal fusion modelling using STRAFM on crop yield prediction for WW and OSR using the LUE model for Bavaria from 2001 to 2019. The chapter states the high positive correlation coefficient (R) = 0.81 and R = 0.77 between the yearly R2 of synthetic accuracy and modelled yield accuracy for WW and OSR from 2001 to 2019, respectively. The chapter analyses the impact of climate variables on crop yield predictions by observing an increase in R2 (0.79 (WW)/0.86 (OSR)) and a decrease in RMSE (4.51/2.57 dt/ha) when the climate effect is included in the model. The fifth chapter suggests that the coupling of the LUE model to the random forest (RF) model can further reduce the relative root mean square error (RRMSE) from -8% (WW) and -1.6% (OSR) and increase the R2 by 14.3% (for both WW and OSR), compared to results just relying on LUE. The same chapter concludes that satellite-based crop biomass, solar radiation, and temperature are the most influential variables in the yield prediction of both crop types. Chapter six attempts to discuss both pros and cons of RS technology while analysing the impact of land use diversity on crop-modelled biomass of WW and OSR. The chapter finds that the modelled biomass of both crops is positively impacted by land use diversity to the radius of 450 (Shannon Diversity Index ~0.75) and 1050 m (~0.75), respectively. The chapter also discusses the future implications by stating that including some dependent factors (such as the management practices used, soil health, pest management, and pollinators) could improve the relationship of RS-modelled crop yields with biodiversity. Lastly, chapter seven discusses testing the scope of new sensors such as unmanned aerial vehicles, hyperspectral sensors, or Sentinel-1 SAR in RS for achieving accurate crop yield predictions for precision farming. In addition, the chapter highlights the significance of artificial intelligence (AI) or deep learning (DL) in obtaining higher crop yield accuracies.Die genaue Überwachung von Nutzpflanzen als Reaktion auf den Klimawandel auf regionaler oder feldbezogener Ebene spielt eine wichtige Rolle bei der Entwicklung von Agrarpolitiken, der Verbesserung der Ernährungssicherheit, der Erstellung von Prognosen und der Analyse von Trends im Welthandel. Es wird erwartet, dass sich der Klimawandel erheblich auf die Landwirtschaft auswirken wird, da sich Verschiebungen bei den Temperaturen, Niederschlagsmustern und extremen Wetterereignissen negativ auf die Ernteerträge, die Bodenfruchtbarkeit, die Wasserverfügbarkeit, die Artenvielfalt und die Anbaubedingungen auswirken werden. Die Fernerkundung (RS) kann in Kombination mit Wachstumsmodellen (CGM) wertvolle Informationen für die Ertragsbewertung liefern, indem sie die Entwicklung von Pflanzen überwacht, Veränderungen bei den Pflanzen erkennt und die Auswirkungen des Klimawandels auf die Ernteerträge bewertet. Ziel dieser Dissertation ist es, das Potenzial von RS-Daten für die Modellierung langfristiger Ernteerträge von Winterweizen (WW) und Ölraps (OSR) für den Freistaat Bayern (70.550 km2 ), Deutschland, zu untersuchen. Das erste Kapitel der Dissertation beschreibt die Gründe, die für die Bedeutung genauer Ernteertragsvorhersagen für die Nachhaltigkeit in der Landwirtschaft sprechen. Das zweite Kapitel befasst sich mit der Bewertung der Genauigkeit der synthetischen RS Daten durch die Fusion der NDVIs von zwei Daten mit hoher räumlicher Auflösung (hohes Paar) (Landsat (30 m, 16 Tage; L) und Sentinel-2 (10 m, 5-6 Tage; S) mit vier Daten mit geringer räumlicher Auflösung (niedriges Paar) (MOD13Q1 (250 m, 16 Tage), MCD43A4 (500 m, ein Tag), MOD09GQ (250 m, ein Tag) und MOD09Q1 (250 m, 8 Tage)) unter Verwendung des räumlich und zeitlich adaptiven Reflexionsfusionsmodells (STARFM), das Wolken- oder Schattenlücken in Regionen füllt, ohne räumliche Informationen zu verlieren. In diesem Kapitel wird festgestellt, dass sowohl L-MOD13Q1 (R2 = 0,62, RMSE = 0,11) als auch S-MOD13Q1 (R2 = 0,68, RMSE = 0,13) für die Überwachung der Landwirtschaft besser geeignet sind als die anderen fusionierten synthetischen Produkte. Im dritten Kapitel wird untersucht, inwieweit die (in Kapitel 2 gewonnenen) synthetischen raum-zeitlichen Datensätze geeignet sind, die Ernteerträge von WW und OSR auf regionaler Ebene genau zu kartieren und zu überwachen. Das Kapitel untersucht und diskutiert die optimalen räumlichen (10 m, 30 m oder 250 m),zeitlichen (8 oder 16 Tage) und CGMs (World Food Studies (WOFOST) und den semi-empirischen Ansatz der Lichtnutzungseffizienz (LUE)) für genaue Ertragsschätzungen beider Kulturarten. Im dritten Kapitel wird festgestellt, dass die Beobachtung von Produkten mit hoher zeitlicher Auflösung (8 Tage) sowohl des S-MOD13Q1 als auch des L-MOD13Q1 eine wichtige Rolle bei der genauen Messung des Ertrags von WW und OSR spielt. In diesem Kapitel wird untersucht, dass das einfache Modell der Lichtnutzungseffizienz (LUE) (R2 = 0,77 und relativer RMSE (RRMSE) = 8,17 %), das weniger Eingabeparameter zur Simulation des Ernteertrags benötigt, sehr genau, zuverlässig und präziser ist als das komplexe WOFOST-Modell (R2 = 0,66 und RRMSE = 11,35 %) mit höheren Eingabeparametern. In Kapitel vier wird der Zusammenhang zwischen der raum-zeitlichen Fusionsmodellierung mit STRAFM und der Ertragsvorhersage für WW und OSR mit dem LUE-Modell für Bayern von 2001 bis 2019 untersucht. Das Kapitel stellt den hohen positiven Korrelationskoeffizienten (R) = 0,81 und R = 0,77 zwischen dem jährlichen R2 der synthetischen Genauigkeit und der modellierten Ertragsgenauigkeit für WW bzw. OSR von 2001 bis 2019 fest. In diesem Kapitel werden die Auswirkungen der Klimavariablen auf die Ertragsvorhersagen analysiert, wobei ein Anstieg des R2 (0,79 (WW)/0,86 (OSR)) und eine Verringerung des RMSE (4,51/2,57 dt/ha) festgestellt werden, wenn der Klimaeffekt in das Modell einbezogen wird. Das fünfte Kapitel deutet darauf hin, dass die Kopplung des LUE-Modells mit dem Random-Forest-Modell (RF) den relativen mittleren quadratischen Fehler (RRMSE) von -8 % (WW) und -1,6 % (OSR) weiter reduzieren und das R2 um 14,3 % (sowohl für WW als auch für OSR) erhöhen kann, verglichen mit Ergebnissen, die nur auf LUE beruhen. Das gleiche Kapitel kommt zu dem Schluss, dass die satellitengestützte Pflanzenbiomasse, die Sonneneinstrahlung und die Temperatur die einflussreichsten Variablen bei der Ertragsvorhersage für beide Kulturarten sind. In Kapitel sechs wird versucht, sowohl die Vor- als auch die Nachteile der RS-Technologie zu erörtern, indem die Auswirkungen der unterschiedlichen Landnutzung auf die modellierte Biomasse von WW und OSR analysiert werden. In diesem Kapitel wird festgestellt, dass die modellierte Biomasse beider Kulturen durch die Landnutzungsvielfalt bis zu einem Radius von 450 (Shannon Diversity Index ~0,75) bzw. 1050 m (~0,75) positiv beeinflusst wird. In diesem Kapitel werden auch künftige Auswirkungen erörtert, indem festgestellt wird, dass die Einbeziehung einiger abhängiger Faktoren (wie die angewandten Bewirtschaftungsmethoden, die Bodengesundheit, die Schädlingsbekämpfung und die Bestäuber) die Beziehung zwischen den mit RS modellierten Ernteerträgen und der biologischen Vielfalt verbessern könnte. Im siebten Kapitel schließlich wird die Erprobung neuer Sensoren wie unbemannte Luftfahrzeuge, hyperspektrale Sensoren oder Sentinel-1 SAR in der RS erörtert, um genaue Ertragsvorhersagen für die Präzisionslandwirtschaft zu erreichen. Darüber hinaus wird in diesem Kapitel die Bedeutung der künstlichen Intelligenz (KI) oder des Deep Learning (DL) für die Erzielung einer höheren Genauigkeit der Ernteerträge hervorgehoben

    Delineation of critical regions for mitigation of carbon emissions due to groundwater pumping in central Punjab

    No full text
    The expansion of groundwater use has not only resulted in a speedy decline in the groundwater table but also added to the problem of carbon emissions (C-emissions) in Punjab. Estimates of C-emissions from groundwater pumping for irrigation in central Punjab indicated that during the last 15 years (1998–2013), the groundwater levels had fallen by 8.89 m; pump set density (per 1000 ha) increased by 45%; groundwater use increased by 140 Mm3; energy requirements increased by 4845.1 MkWh (90%), all this resulted into an increase in C-emissions by 984.1 kiloton (30%). The relationship between carbon emissions and groundwater depth showed that for each meter fall of groundwater level in central Punjab, C emissions will increase by 2.67 g/m³. The present level of groundwater exploitation in Bhawanigarh, Dharmkot, Dhuri, Malerkotla I, Malerkotla II, Nabha, Nakodar, Sangrur, Samana, Sherpur and Sunam is considered as threat to the environment and should be targeted to reduce C-emissions
    corecore